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Theoretical study of the stress transfer in single 
fibre composites 
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The stress transfer in single fibre reinf, grced composites is studied theoretically with the help of 
a finite difference type of approach. The results show that the critical fibre length for efficient 
stress transfer to the fibre is a unique function of the ratio between the Young elastic moduli 
of fibre and matrix. The effect of the bonding efficiency between the two components is 
studied and dramatic increases in the critical length are observed when adhesion falls below 
30%. The results are compared to the predictions of other analytical and numerical 
approaches. A good quantitative agreement is found with available experimental data. 

1. Introduct ion 
Fibre reinforced materials are gaining increasing tech- 
nological importance due to their great versatility and 
high performance. These materials often consist of 
discontinuous strong fibres embedded in a matrix, 
with the fibre axes oriented in the direction of the 
applied load [1, 2]. Since the elastic modulus of the 
fibre is typically much larger than that of the matrix, 
the axial elastic displacements of the two components 
can be very different. In order to rationalize the design 
of reinforced materials, it is thus of primary import- 
ante to have a detailed knowledge of the stress distri- 
bution induced by the applied load. Indeed, when 
discontinuous fibres are used, the attainment of good 
mechanical properties depends critically upon the 
efficiency of stress transfer between the matrix and the 
fibres. That efficiency is often characterized by the 
critical length, Ic, required of a fibre (of given dia- 
meter) to build up a maximum stress equal to that of 
an infinitely long fibre [3]. That length is closely 
related to the critical length determined by fibre pull- 
out tests [4]. 

Analytical equations for the variation of stress 
along discontinuous fibres in a cylindrically symmetri- 
cal model have been derived by Cox [5] and by Dow 
[6]. Both approaches, however, neglect the adhesion 
across the end face of the fibres and they fail to take 
into account local stress concentration effects near 
fibre ends. The importance of these assumptions has 
been demonstrated by finite element approaches 
[7-9]. Unfortunately, because of the large amount of 
computer time required by these approaches, the 
studies were restricted to very small systems and the 
importance of finite size effects could not be assessed. 

The present paper attempts to tackle these problems 
using a finite difference type of approach. In that 
approach, the material is represented by a regular 
three-dimensional lattice whose nearest neighbour 
nodal points are linked by bonds having different 
elastic constants for the fibre and for the matrix. For 
a given external strain, these nodes are relaxed towards 
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local mechanical equilibrium with their neighbours by 
a systematic sequence of operations which steadily 
reduce the net residual force acting on each node. In 
addition to a greater versatility, the major strength of 
the present approach over the finite element analysis is 
the many highly efficient algorithms available for the 
reduction of the residuals [10]. As a result, much larger 
systems can be investigated. The present work is 
mainly concerned with the study of a single fibre 
embedded in an infinitively large matrix. Finite size 
effects are studied and shown to play an important 
role in previous finite element analyses [7-9]. The 
effect, on the critical length, of the adhesion and of the 
difference in elastic moduli between fibre and matrix 
are investigated and the predictions of the model are 
compared to available experimental data. The exten- 
sion of the present results to multi-fibre composites 
will be presented in a forthcoming publication. 

2. Mode l  
We start by describing our lattice model for a single 
fibre embedded in an infinite three-dimensional matrix. 
Fig. 1 gives a two-dimensional representation of the 
lattice in a x - y  plane passing through the centre of the 
fibre. The lattice is of the simple cubic type and com- 
prises 300 nodes along the y-axis and 33 nodes in the 
transverse x- and y-directions. These dimensions were 
deemed sufficiently large in order to ensure that our 
results.are size independent. Since the results turn out 
to be also independent of model details (see Section 3), 
the fibre diameter, d, was arbitrarily set equal to 3 
lattice units. The elastic Young shear moduli of the 
matrix and of the fibre are denoted by Era, G= and El, 
Gf, respectively. 

The lattice is strained by a constant amount (1%) 
along the y-axis. This leads to displacements of the 
nodes along the different axes. In order to estimate 
these displacements, each node is relaxed towards 
local mechanical equilibrium with its neighbours by 
bringing to zero the net residual force acting on that 
node [1!]. The liquidation of these residuals has 
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Figure 1 Two-dimensional representation of the array of nodes in 
an x - y  plane passing through the centre of the fibre. The fibre 
diameter is set equal to d = 3 lattice units. Em,G = and El, (:;fare the 
Young and shear elastic moduli of the matrix and the fibre, respec- 
tively. The lattice is of the simple cubic type and comprises 300 
nodes along the y-axis and 33 in the transverse x and y directions. 

been performed using two well-known computational 
devices [10] which considerably speed up the con- 
vergence of the calculations. The first device, known 
as overrelaxation, consists not just in reducing the net 
residual for a node but, instead, deliberately goes 
further and gives to that residual a sighn that is opposite 
to that of the residuals for the neighbouring nodes. 
The second device is known as block relaxation and 
consists in relaxing more than one node at a time. 
The liquidation of the residuals was considered to be 
completed when the largest residual force for a node 

fell below a few per cent of the average force for a 
bond. The above relaxation process leads, for each 
node, to motions along the three coordinate axes. For 
simplicity, we assume these motions to be mutually 
independent and we focus on displacements along the 
y-axis [9]. Since the shear modulus of deformation 
predominates when it comes to load transfer between 
the matrix and the fibre, lateral motions in the x- and 
z-directions should be of secondary importance for 
the present study [8]. The validity of our assumption 
will also be discussed in Section 3. 

A two-dimensional representation of the general 
deformation scheme of the model for a choice El~ 
Em= 40 is shown in Fig. 2. Since the elastic modulus 
of the fibre is much larger than that of the matrix, the 
axial elastic displacements of the two components are 
very different. (The y-scale has been distorted so the 
effects can be easily seen.) The figure shows an import- 
ant bending of radial lines at regions close to the fibre 
end. That observation is in sharp contrast to the 
assumption made in previous analytical approaches 
[6] that straight radial lines remain straight after com- 
posite deformation. The figure also indicates that, far 
away from the fibre end, radial lines recover their 
original direction perpendicular to the fibre axis, thus 
indicating that the limit of a very long fibre in an 
infinite matrix is attained. 

3. Results  and d i scuss ion  
Fig. 3 shows the results for the tensile strain along a 
y-axis passing through the centre of the fibre. The 
strain is in units of the overall strain on the composite. 
Since the analysis is completely elastic, the value of the 
external strain has no real significance and stress con- 
centration effects are independent of it. The figure is 
for different values ofthe ratio Er/E=, assuming perfect 
adhesion, i.e. no broken lattice bond at the interface 
between the matrix and the fibre. For simplicity, we 

Figure 2 General deformation scheme of the model on a x - y  plane, for a ratio Ef/E= = 40. The y-scale has been distorted so the effects 
can be easily seen. The fibre and the matrix were assumed isotropic. 
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Figure 3 Tensile strain near a fibre end, along a y-axis passing 
through the centre of  the fibre. The strain is in units o f  the overall 
strain on the composite. The figure is for different values of  the ratio 
Ef/E m. We took d = 3 lattice units and assumed fibre and matrix 
to be isotropie. 

also assumed the matrix and the lat~re to be isotropic, 
i.e. (7= = Era/2(1 + v), Gr = Er/2(1 + v) where we 
choose v = 0.35 for the Poisson ratio. The figure 
shows that the increase of  axial strain in the fibre 
becomes less pronounced as the ratio ERIE= is 
increased. The strain in the fibre does not start from 
zero because of the load transfer from the matrix 
across the fibre end. That transfer, neglected by Cox 
[5] and Dow [6] is seen to be quite important and 
accounts for more than 25% of the maximum fibre 
strain. 

Calculations in which the fibre was assumed to be 
anisotropie, taking Gr = Em, gave results identical to 
those of  Fig. 3, to within a few per cent. We have also 
performed simulations using a cruder representation 
of the fibre by taking d = 1 lattice unit (instead of  
d = 3 units, see Fig. 1). Results, again, were similar to 
those of  Fig. 3. 

We now turn to a study of the importance of our 
neglect of  the correlations between the nodes displace- 
ments in the different x-, y- and z-directions. I f  we 
assume that the deformation of the elementary volumes 
in Fig. 1 occurs at constant volume, we expect the 
motions of the nodes along the y-axis to be "hin- 
dered" by restoring forces exerted by the overall 
matrix in the x - z  plane. In order to estimate the 
importance of  those effects, we turn to a mean-field 
type of  approximation and express the restoring force 
acting on each bond as F = E= Ae in which Ae is the 
difference between the overall strain on the composite 
and that on the bond being considered. Results 
obtained with that modified version of the model (for 
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Figure 4 Interfae]al slaear stress near a fibre end for the cases studied 
in Fig. 3. The stress is in units o f  the overall stress on the composite. 

Er/Em = 20, d = 1) were found to be almost identical 
to those of  Fig. 2, except for a slightly smoother 
variation of the tensile strain around the fibre end. The 
above calculations thus indicate that the build-up of 
strain in the fibre is quite independent of model details 
and is a unique function of the ratio between the 
elastic Young moduli of the fibre and the matrix. 

The results for the interracial shear stress corre- 
sponding to the cases studied in Fig. 3, are given in 
Fig. 4. The figure shows a sharp variation in shear 
stress within a distance equal to 2 to 4 fibre diameters 
from the fibre end. Not also that our curve for a ratio 
Er/Em = 20 is in good quantitative agreement with 
experimental data on the shear stress along a single 
Dural fibre in an Araldite matrix (EourJEg,l~to = 21) 
[12]. 

Fig. 5 summarizes our results for the effect of  El~Era 
on the critical length, Ic, of the fibre, i.e. the length 
necessary to build up in the fibre a maximum strain 
equal to 97% of that for an infinitely long fibre [2]. 
The knowledge of lc is of primary importance to 
ensure an efficient reinforcement effect by the fibre. 
The lc values are in units of the fibre diameter. Inspec- 
tion of the figure shows that the critical length increases 
almost linearly With an increase in the fibre's Young 
modulus, Er. That result is in sharp contrast to the 
prediction of previous analytical theories [4, 5] that 
l~ ..~ E~/2 [13]. Turning to comparison with exper- 
iment, Galiotis et al. [13] have recently measured the 
critical length of one polydiacetylene single crystal in 
an infinite epoxy matrix. The two components have a 
ratio El~Era = 16, good bonding properties [14] and 
the critical length has been determined to be lc = 27 
fibre diameters [13]. These values are in good quan- 
titative agreement with our results of Fig. 5, obtained 
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assuming perfect adhesion between fibre and matrix. 
Note, though, that the experimental data in [12] also 
show that the axial strain in the fibre at a distance I far 
away from the ends (l ,> lc) is lower than the overall 
strain on the composite, in contrast with our results in 
Fig. 3. That discrepancy, however, is due to a buckling 
effect of the fibre during the curing process [15]. 

The effect of the adhesion on the critical length is 
shown in Fig. 6, for a ratio Er/Em = 15 and d = 1 
lattice unit. Changing the adhesion in the model was 
realized by breaking bonds at the fibre-matrix 
interface, with probability (1-adhesion factor). A 
decrease in the adhesion is seen to increase the critical 
length, that increase being particularly dramatic when 
adhesion becomes less than 30%. Alternatively, any 
experimental determination of the critical length in 
these composites could, with the help of Fig. 6, give 
useful estimates of the degrees of adhesion between 
fibre and matrix. Note, finally, that the results of 
Fig. 6 depend on the thickness of  the interphase (thick- 

hess = fibre diameter in the figure). Any decrease of the 
interphase thickness will lower the adhesion values at 
which dramatic increases in lc are observed. 

The results presented so far were for a single fibre 
embedded in a large cylindrical matrix of diameter up 
to 33 fibre diameters. The effect of  a reduction in the 
matrix diameter on the build-up of  strain in the fibre 
is displayed in Fig. 7, for Ef/E,~ = 15. A decrease in 
the matrix diameter to 5 to 10d is seen to lead to an 
extremely slow build-up of strain and poor efficiency 
of load transfer between the matrix and the fibre. This 
result also clearly explains why the finite element 
simulations in [6], using a lattice diameter equal to 
10d, failed to reach the state of maximum strain in the 
middle of the fibre. 

In conclusion, we have shown that the finite dif- 
ference analysis developed in the present paper, can 
provide a useful tool for the study of the factors 
limiting the mechanical properties of fibre reinforced 
composites. In addition to a much greater versatility, 
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Figure 6 Dependence of the critical length on the ad- 
hesion factor for a ratio Ef/E. = 15. The figure is for 
d = I lattice unit. 
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Figure 7 Tensile strain near a fibre end, for different values of the 
matrix diameter. The figure is for ERIE= -- 15, taking the fibre 
diameter d = 1 lattice unit. 

the major strength of the present approach over the 
finite element analysis is the many highly efficient 
algorithms available for the reduction of the residuals. 
As a result, much larger systems can be studied and 
comparison to experiment becomes feasible. The 
present study dealt with the case of a single fibre 
composite. This is an essential step before multi-fibres 

composites can be considered, which will be the object 
of a forthcoming publication. 
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